

Formation and Reactivity of Hetero-Atom–Centered Radicals

Xue-Song Zhou Feb. 18, 2023

The Xiao Group Meeting Key Laboratory of Pesticide & Chemical Biology

1

- Discovery of boryl radicals
- Reduction reaction promoted by boryl radicals
- Cyclization cascade reaction promoted by boryl radicals

明德、厚学、求实、笃行

The Xiao Group

Hydroboration reaction promoted by boryl radicals

Minisci reaction promoted by boryl radicals

Type and structure of LB-BH₃ complexs

Early studies for boron radical

Figure 1. E.s.r. spectra at 193 K of (a) Et_3N-BH_2 generated from Et_3N-BH_3 (97.5 atom% ¹¹B) in cyclopropane-THF (3:1 v/v) and (b) Et_3N-BD_2 generated from Et_3N-BD_3 (81.2 atom% ¹¹B) in cyclopropane-[²H₈]THF (3:1 v/v). Some unidentified lines are present in both spectra. No e.s.r. signals were observed during photolysis of Et_3N-BH_3 alone in cyclopropane-THF.

明德、

B. P. Roberts, et. al. J. Chem. Soc., Chem. Commun. 1983, 1224.

The Xiao Group

<u>厚学、</u>求实、笃行

BDE of LB-BH₃ complexs

明德、厚学、求实、笃行

The Xiao Group

Reduction reaction promoted by boryl radicals

Cyclization cascade reaction promoted by boryl radicals

明德、厚学、求实、笃行

The Xiao Group

Hydroboration reaction promoted by boryl radicals

Minisci reaction promoted by boryl radicals

NHC-BH₃ mediated Barton-McCombie deoxygenation reaction

D. P. Curran, et. al. J. Am. Chem. Soc. 2008, 130, 10082.

The Xiao Group

NHC-BH₃ mediated Barton-McCombie deoxygenation reaction

厚

明德、

求买、

Figure 7. Solution EPR spectrum of NHC-BH₂ \bullet radical **3a**. Top: First derivative experimental spectrum at 300 K in *t*-BuPh. Bottom: Computer simulation with parameters noted in Table 1.

The Xiao Group

D. P. Curran, et. al. J. Am. Chem. Soc. 2009, 131, 11256.

第行

NHC-BH₃ mediated radical reductions of halides

D. P. Curran, et. al. J. Am. Chem. Soc. 2012, 134, 5669.

The Xiao Group

NHC-BH₃ mediated radical reductions of halides

$$NHC-BH_{2} + R-X \xrightarrow{fast}{k_{1} > 10^{5} M^{-1} s^{-1}} NHC-BH_{2}X + R \cdot (1)$$

$$NHC-BH_{3} + R \cdot \xrightarrow{slow}{k_{2} < 10^{5} M^{-1} s^{-1}} NHC-BH_{2} + R-H (2)$$

$$PhS-H + R \cdot \xrightarrow{fast}{k_{3} \approx 10^{8} M^{-1} s^{-1}} PhS \cdot + R-H (3)$$

$$NHC-BH_{3} + PhS \cdot \xrightarrow{fast}{k_{4} = 1.2 \times 10^{8} M^{-1} s^{-1}} NHC-BH_{2} \cdot + PhS-H (4)$$

$$PhS \cdot + NHC-BH_{3} \longrightarrow PhSH + NHC-BH_{2} \cdot (4) 1 \xrightarrow{fast}{for rxn of 1 with PhS} Experimental spectra$$

$$NHC-BH_{2} \cdot + \xrightarrow{Bu}{} \xrightarrow{h \cdot O}{} \xrightarrow{fast}{} \xrightarrow{Ph}{} \xrightarrow{Ph}{} \xrightarrow{H}{} \xrightarrow{Ph}{} \xrightarrow{Ph}{} \xrightarrow{H}{} \xrightarrow{Ph}{} \xrightarrow{H}{} \xrightarrow{H}{} \xrightarrow{Ph}{} \xrightarrow{H}{} \xrightarrow{H$$

B (G)

明德、厚学、求实、笃行

D. P. Curran, et. al. J. Am. Chem. Soc. 2012, 134, 5669.

The Xiao Group

10

NHC-BH₂•

NHC-BH₃ mediated reductive decyanation

D. P. Curran, et. al. J. Am. Chem. Soc. 2015, 137, 8617.

The Xiao Group

<u>明德、</u>厚学、求实、笃行

Early studies for boron radical addition reaction

D. P. Curran, et. al. J. Am. Chem. Soc. 2015, 137, 8617.

The Xiao Group

<u>明德、</u>厚学、求实、笃行

Possible process for boron radical addition reaction

明德、厚学、求实、笃行 \ The Xiao Group

Reduction reaction promoted by boryl radicals

Cyclization cascade reaction promoted by boryl radicals

明德、厚学、求实、笃行

The Xiao Group

Hydroboration reaction promoted by boryl radicals

Minisci reaction promoted by boryl radicals

Cyclization cascade reaction promoted by boryl radicals

Radical borylation/cyclization cascade of 1,6-enynes

1a

conditions: AIBN (20 mol%), C₉H₁₉C(CH₃)₂SH (50 mol%), MeCN, 80 °C, 2-12 h; $R^1 = Ar$, CO_2Me , Z = NTs, $C(CO_2Et)_2$, n = 1, 2, 3; AIBN = 2,2'-azobis(isobutyronitrile)

明德、

Y.-F. Wang, et. al. J. Am. Chem. Soc. 2017, 139, 6050.

The Xiao Group

厚学、求实、笃行

Cyclization cascade reaction promoted by boryl radicals

Radical borylation/cyclization cascade of 1,6-enynes

明德、

Y.-F. Wang, et. al. J. Am. Chem. Soc. 2017, 139, 6050.

The Xiao Group

厚学、求实、笃行

Cyclization cascade reaction promoted by boryl radicals

Radical borylation/cyclization cascade of 1,6-dienes and N-allylcyanamides

condition: AIBN (20 mol%), $C_9H_{19}C(CH_3)_2SH$ (20 mol%), CH_3CN , 80 °C, 12 h $R^1 = Ar$, CO_2Et , $CONEt_2$, $R^2 = Ts$, Ar, Bn, Boc, Z = NTs, O, $C(CO_2Et)_2$

17

Reduction reaction promoted by boryl radicals

Cyclization cascade reaction promoted by boryl radicals

明德、厚学、求实、笃行

The Xiao Group

Hydroboration reaction promoted by boryl radicals

Minisci reaction promoted by boryl radicals

α-Regioselective radical hydroboration of activated alkenes

Y.-F. Wang, et. al. Nat. Commun. 2019, 10, 1934.

<u>厚学、</u>求实、笃行 明德、 The Xiao Group

Ph

α-Regioselective radical hydroboration of activated alkenes

明德、

Y.-F. Wang, et. al. Nat. Commun. 2019, 10, 1934.

The Xiao Group

<u>厚学、</u>求实、笃行

20

α-Regioselective radical hydroboration of activated alkenes

A proposed mechanism

明德、厚学、求实、笃行

Y.-F. Wang, et. al. Nat. Commun. 2019, 10, 1934.

The Xiao Group

α-Regioselective radical hydroboration of activated alkenes

明德、

厚学、求实、

Y.-F. Wang, et. al. Nat. Commun. 2019, 10, 1934.

The Xiao Group

笃行

α-Regioselective radical hydroboration of activated alkenes

明德、

厚学、求实、

Y.-F. Wang, et. al. Nat. Commun. 2019, 10, 1934.

The Xiao Group

笃行

β-Regioselective radical hydroboration of activated alkenes

明德、

J. Xie; S.-H. Li; C.-J. Zhu, et. al. Angew. Chem. Int. Ed. 2020, 59, 12817.

The Xiao Group

<u>厚学、</u>求实、笃行

β-Regioselective radical hydroboration of activated alkenes

J. Xie; S.-H. Li; C.-J. Zhu, et. al. Angew. Chem. Int. Ed. 2020, 59, 12817.

The Xiao Group

β-Regioselective radical hydroboration of activated alkenes

measurements always mean these should be taken only as guidelines. The oxidation potentials of Amide aonic (10) $(E_{1/2}^{\text{oxidation}} = 0.53 \text{ V vs SCE})$, ${}^{t}\text{BuS}^{-}$ $(E_{1/2}^{\text{oxidation}} = 0.52 \text{ V vs SCE})$. The oxidation potentials of Amide ionic and ${}^{t}\text{BuS}^{-}$ is similar, both of them are lower than photocatalyst Ir(ppy)₂(dtbbpy)PF₆ $(E_{1/2}*\text{III}/\text{II} = +0.66 \text{ V vs SCE})$ ^[3]. J. Xie; S.-H. Li; C.-J. Zhu, et. al. *Angew. Chem. Int. Ed.* **2020**, *59*, 12817.

明德、厚学、求实、笃行 \ The Xiao Group

Radical hydroboration of imines

J. Xie; C.-J. Zhu, et. al. Angew. Chem. Int. Ed. 2018, 57, 3990.

The Xiao Group

明德、厚学、求实、笃行

AUB

Radical hydroboration of imines

明德、厚学、求实、

J. Xie; C.-J. Zhu, et. al. Angew. Chem. Int. Ed. 2018, 57, 3990.

当行

The Xiao Group

Radical hydroboration of imines

J. Xie; C.-J. Zhu, et. al. Angew. Chem. Int. Ed. 2018, 57, 3990.

The Xiao Group

Radical hydroboration of activated alkenes by photoredox catalysis

H.-Y. Xiang; X.-Q. Chen, H, Yang, et. al. Angew. Chem. Int. Ed. 2020, 59, 6706.

The Xiao Group

Radical hydroboration of activated alkenes by photoredox catalysis

H.-Y. Xiang; X.-Q. Chen, H, Yang, et. al. Angew. Chem. Int. Ed. 2020, 59, 6706.

The Xiao Group

Radical hydroboration of activated alkenes by photoredox catalysis

H.-Y. Xiang; X.-Q. Chen, H, Yang, et. al. Angew. Chem. Int. Ed. 2020, 59, 6706.

The Xiao Group

Radical hydroboration of activated alkenes by photoredox catalysis

明德、

Y.-F. Wang, et. al. Angew. Chem. Int. Ed. 2020, 59, 12876.

The Xiao Group

厚学、求实、笃行

Radical hydroboration of activated alkenes by photoredox catalysis

<u>明德、</u>厚学、求实、笃行

(a) Stern-Volmer quenching experiments

Y.-F. Wang, et. al. Angew. Chem. Int. Ed. 2020, 59, 12876.

The Xiao Group

Reduction reaction promoted by boryl radicals

Cyclization cascade reaction promoted by boryl radicals

明德、厚学、求实、笃行

The Xiao Group

Hydroboration reaction promoted by boryl radicals

Minisci reaction promoted by boryl radicals

A radical approach for the selective C–H borylation of azines

明德、厚学、求实、笃行

D. Leonori, et. al. Nature 2021, 595, 677.

The Xiao Group

A radical approach for the selective C–H borylation of azines

明德、厚学、求实、笃行

D. Leonori, et. al. Nature 2021, 595, 677.

The Xiao Group

AUB

明德、厚学、求实、笃行

The Xiao Group

Discovery of silyl radicals

Generation of silvl radicals from Si–H reagents

Generation of silvl radicals from Si–Si reagents

Generation of silvl radicals from Si–CO₂H reagents

Silyl radical precursor

X-H BDE (kcal/mol)					
TMS TMS-Si=H TMS	H N N	Me ○ =H	CI-H	Br=H	Ph <mark>S=</mark> H
84	100-110	105	102	88	87

明德、厚学、求实、笃行 The Xiao Group

明德、厚学、求实、笃行

The Xiao Group

Discovery of silyl radicals

Generation of silvl radicals from Si–H reagents

Generation of silyl radicals from Si–Si reagents

Generation of silyl radicals from Si–CO₂H reagents

General mechanism for hydrosilylation of alkenes via HAT

明德、

M. Fagnoni, et. al. *ChemCatChem*, **2015**, 7, 3350.

The Xiao Group

厚学、求实、笃行

HUALTONG UNIVER

Generation of silyl radicals from Si–H reagents

明德、

M. Fagnoni, et. al. ChemCatChem, 2015, 7, 3350.

The Xiao Group

厚学、求实、笃行

Hydrosilylation of alkenes via HAT

J. Wu, et. al. Angew. Chem. Int. Ed. 2017, 56, 16621.

The Xiao Group

Hydrosilylation of alkenes via HAT

J. Wu, et. al. Angew. Chem. Int. Ed. 2017, 56, 16621.

The Xiao Group

General mechanism for hydrosilylation of alkenes via HAT

Silacarboxylation of alkenes via HAT

明德、厚学、求实、笃行

J. Wu, et. al. Angew. Chem. Int. Ed. 2018, 57, 17720.

The Xiao Group

Dehydrogenative silylation of alkenes via HAT

Dehydrogenative silulation of alkenes via HAT

Scheme 3. A proposed mechanism.

P.-F. Xu, et. al. Angew. Chem. Int. Ed. 2019, 58, 10941.

The Xiao Group

Arylsilylation of alkenes via HAT

Arylsilylation of alkenes via HAT

明德、厚学、求实、笃行

X.-L. Hu, et. al. ACS Catal. 2020, 10, 777.

The Xiao Group

Hydrosilylation of alkynes via HAT

明德、

Z.-H. Zhang, B. Zhang, et. al. Org. Lett. 2019, 21, 2750.

The Xiao Group

<u>厚学、</u>求实、笃行

Hydrosilylation of alkynes via HAT

明德、厚学、求实、笃行

Z.-H. Zhang, B. Zhang, et. al. Org. Lett. 2019, 21, 2750.

The Xiao Group

C–H silylation of heteroarenes via HAT

Selected substrate scope of isoquinoline:

Selected substrate scope of other heteroarene:

明德、厚学、求实、笃行

H. Li, W. Wang, Y.-Q. Zhang, et. al. Chem. Sci. 2019, 10, 3817.

The Xiao Group

明德、厚学、求实、笃行

The Xiao Group

Discovery of silyl radicals

Generation of silyl radicals from Si–H reagents

Generation of silvl radicals from Si–Si reagents

Generation of silvl radicals from Si–CO₂H reagents

Hydrosilylation of alkenes via oxidative Si–Si bond cleavage

明德、

厚学、求实、

A. Studer, et. al. Angew. Chem. Int. Ed. 2021, 60, 675.

笃行

The Xiao Group

Hydrosilylation of alkenes via oxidative Si-Si bond cleavage

A. Studer, et. al. Angew. Chem. Int. Ed. 2021, 60, 675.

The Xiao Group

Hydrosilylation of imines via oxidative Si-Si bond cleavage

A. Studer, et. al. Angew. Chem. Int. Ed. 2021, 60, 23335.

The Xiao Group

<u>明德、</u>厚学、求实、笃行

HUALING UNITY

Generation of silyl radicals from Si–Si reagents

Hydrosilylation of imines via oxidative Si-Si bond cleavage

Hydrosilylation of imines via oxidative Si-Si bond cleavage

明德、

A. Studer, et. al. Angew. Chem. Int. Ed. 2021, 60, 23335.

The Xiao Group

厚学、求实、笃行

明德、厚学、求实、笃行

The Xiao Group

Discovery of silyl radicals

Generation of silyl radicals from Si–H reagents

Generation of silvl radicals from Si–Si reagents

Generation of silvl radicals from Si–CO₂H reagents

Generation of silyl radicals from Si–CO₂H reagents

Hydrosilylation of alkenes via decarboxylation of silacarboxylic acids

Hydrosilylation of alkenes via decarboxylation of silacarboxylic acids

 $E^{1/2}(PC^*/PC^{-}) = +1.35V$ $E^{1/2}(Ph_2MeSiCOO^{-}/Ph_2MeSiCOO^{-}) = +1.32V$

C. Wang, M. Uchiyama, et. al. Angew. Chem. Int. Ed. 2020, 59, 10629.

The Xiao Group

Reviews for boryl radicals

- Lewis base-boryl radicals enabled borylation reactions and selective activation of carbon-heteroatom bonds. Y.-F. Wang, et. al. Acc. Chem. Res. 2023, 56, 169.
- Advances in chemistry of N-heterocyclic carbene boryl radicals. T. Taniguchi, *Chem. Soc. Rev.* 2021. 50. 8995.
- Boryl radical addition to multiple bonds in organic synthesis. T. Taniguchi, *Eur. J. Org. Chem.* 2019, 2019, 6308.

Reviews for silyl radicals

- Recent development of photo-mediated generation of silyl radicals and their application in organic synthesis. J. Wu, et. al. *ChemPhotoChem.* 2018, 2, 839.
- Recent advances in photo- and electro-enabled radical silulation. C. He, Org. Chem. Front., 2022, 9, 6400.

明德、厚学、求实、笃行

The Xiao Group

- ▶ 杂原子自由基的产生条件越来越温和,其自由基前体越来越丰富;
- ▶ 探索新的杂原子自由基前体以及杂原子自由基受体;
- ▶ 如何实现烯烃的双官能团化,一步引入两个杂原子;
- ▶ 如何通过杂原子自由基中间体实现含杂原子的手性分子构建。

明德、厚学、求实、笃行

The Xiao Group